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Initialize

‡ Read in Statistical Add-in packages:

In[34]:= Off@General::spell1D;
SetOptions@ArrayPlot, ColorFunction Ø "GrayTones", DataReversed Ø True,

Frame Ø False, AspectRatio Ø Automatic, Mesh Ø False,
PixelConstrained Ø True, ImageSize Ø SmallD;

SetOptions@ListPlot, ImageSize Ø SmallD;

In[37]:= nbinfo = NotebookInformation@EvaluationNotebook@DD;
dir =

H"FileName" ê. nbinfo ê. FrontEnd`FileName@d_List, nam_, ___D ß

ToFileName@dDL;

‡ Histogram

In[38]:= myhistogram@image_D := Module@8histx<,
histx = BinCounts@Flatten@imageD, 80, 255, 1<D;
Return@N@histx ê Plus üü histxDD;

D;

‡ Entropy

In[39]:= entropy@probdist_D := Plus üü HIf@Ò == 0, 0, -Ò Log@2, ÒDD & êü probdistL



‡ Image data

In[149]:= granite = ImageDataB F;

In[150]:= N@Mean@Flatten@graniteDDD
N@StandardDeviation@Flatten@graniteDDD
width = Dimensions@graniteD@@1DD

Out[150]= 0.507939

Out[151]= 0.0773643

Out[152]= 64

Outline

Last time

‡ First-order intensity statistics. Explaining point non-linearities in terms of efficient coding of natural 

images

Today

‡ Form and function: overview of visual pathway

‡ 2nd order spatial statistics and efficient coding

We've learned about localized spatial frequency filters in early vision. We now ask: Why?

Retina to V1: Review of form & function
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Retina to V1: Review of form & function
(There are a number of web-based overviews, for example: http://www.sumanasinc.com/webcontent/anisamples/neurobiol-
ogy/visualpathways.html).

Overview of pathways from eye-to-cortex
Roughly ten million retinal measurements are sent to the brain each second, where they are processed by some billion 
cortical neurons.

The primate retina has about 10^7 cones that send visual signals to the  optic nerve via about 10^6 ganglion cells.  The 
optic nerves from the  two eyes meet at the optic chiasm where about half of the fibers cross over and  the other half 
remain on the same side of the underside of the brain. Before  synapsing in the lateral geniculate nucleus, about 20% of 
these fibers that  make up the optic tract branch off to the superior colliculus--a structure  involved with eye movements. 
Other fibers project to various other nuclei, but the majority of the optic tract fibers  synapse on cells in the lateral genicu-
late nucleus. Cells in the lateral  geniculate nucleus send their axons in a bundle called the optic radiation  to layer IV (one 
of six layers) of primary visual cortex.  A schematic representation of these pathways was shown in notes for an earlier 
lecture.

Retina
Earlier we noted that retinal ganglion cells have a characteristic center-surround organization with excitatory centers and 
inhibitory surrounds (or inhibitory centers and excitatory surrounds). We modeled the spatial output of the retina as a 
linear filter that convolves the input image with a kernel determined by the center-surround receptive field weights--a so-
called single channel model, because the kernel is assumed to be the same shape and size at different locations. The spatial 
frequency bandpass characteristics of the retina are determined by just one kernel.

The left figure shows contrast thresholds for various light levels (from van Nes, & Bouman, M. A. (1967). Spatio modulation 
transfer in the human eye. J Opt Soc Am, 57(3), 401-406). The right figure is a replot of the left figure from: Atick, J. J., & 
Redlich, A. N. (1992). What does the retina know about natural scenes? Neural Computation, 4(2), 196-210. The solid lines 
show fits  by Atick & Redlich based on an efficient coding model.
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The left figure shows contrast thresholds for various light levels (from van Nes, & Bouman, M. A. (1967). Spatio modulation 
transfer in the human eye. J Opt Soc Am, 57(3), 401-406). The right figure is a replot of the left figure from: Atick, J. J., & 
Redlich, A. N. (1992). What does the retina know about natural scenes? Neural Computation, 4(2), 196-210. The solid lines 
show fits  by Atick & Redlich based on an efficient coding model.

The retina's temporal processing can also be thought of as differentiation, but in time rather than space, and can be mod-
eled as a band-pass temporal frequency filter (see Enroth-Cugell and Robson, 1966). Analogous to the spatial frequency 
selectivity,  retinal ganglion cells pass the contrast of medium temporal frequencies more effectively than either low or 
high frequencies. For a retinal ganglion cell, contrast sensitivity as a function of temporal frequency is an inverted U, 
qualitatively similar to the spatial CSF. Humans are insensitive to temporal frequencies higher than the temporal cut-off 
(for humans about 50-80 Hz, depending on the mean light level). That is why TV frames (60 Hz interlaced) or computer 
displays (now usually >70 Hz) are not seen to be flickering. An extreme consequence of the low temporal frequency 
attenuation, is that an image that is held stationary on the retina dissappears.  A VLSI retina having similar spatial and 
temporal filtering properties  was first built at Caltech by Mead and colleagues in the late 1980s (Mead, 1989). 

At the retina, one begins to see evidence for multiple visual pathways for spatio-temporal information. In cats, 
ganglion X-cells have smaller receptive fields and poorer temporal resolution than Y-cells, suggesting that the X channel 
carries information important for fine spatial detail, and the Y-cell channel conveys coarse-scale spatial information 
quickly. There is a similar distinction in primates, the, so-called magno-cellular (homologous to Y-cells) and parvo-
cellular (homologous to X-cells) cells and pathways.

Human temporal contrast sensitivity functions.
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Functions of the Chiasm and LGN
The optic chiasm routes neuronal information so that information  from corresponding points on the left and right eyes can 
come together at  cortex for binocular vision, and in particular stereo vision.  Typically animals with frontal vision have 
nearly complete cross-over, and animals with  lateral eyes (e.g. fish) have little or no cross-over. The nervous system has 
gone to considerable length  to bring information from the two eyes together early on. This suggests that certain kinds of 
cortical computations cannot easily be done "remotely", but require close connectivity between neurons, and the resulting 
topographic maps. 

The neurons of lateral geniculate nucleus do more band-pass filtering,  and the cells are characterized by fairly symmetri-
cal center-surround  organization like the ganglion cells. They show even less response to uniform  illumination than 
ganglion cells. Despite the fact that neurons from the two  eyes exist within the same nucleus, no binocular neurons are 
found in LGN.  We have to wait until cortex to see binocular neurons. The X- and Y-cell division of labor continues with 
the so-called parvocellular (with corresponding retina input from P cells in monkeys, or X cells in cats), and the magnocel-
lular (Y cells or M cells) pathways. Again the experimental measurements are consistent with the idea the the M pathway 
carries a fast, but coarse spatial representation of the image to the cortex, while the P pathway carries finer spatial detail 
but more slowly.

Although the LGN is  often considered a relay station,  feedback from cortex suggests possible role of attention mecha-
nisms (see Crick, 1984 for  a speculative neural network theory of  LGN and reticular function; Mumford, 1991; Sillito et 
al., 1994).  Although we will bypass a treatment of the superior colliculus, it has an important role is in the control of eye 
movements--a highly non-trivial  problem requiring coordination of head and eye movements in the context of  a con-
stantly changing environment. 
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Anatomy and physiology of primary visual cortex
Neurons in the LGn send their axons (the optic radiation) to synapse on layer IV neurons of the  primary visual cortex 
(also known as area 17 in cat, striate cortex or V1in monkeys and humans).  Cortex is  anatomically structured in layers, 
numbered from I (superficial) to VI  (deep). The striate cortex is laid out as non-linear topographic map with 80%  of 
cortical   area devoted to about 20% of visual field, reflecting the higher  acuity of foveal vision. Because of the cross-over 
at the optic chiasm, the  left visual field (right retina) maps to right hemisphere. In monkey, many of the neurons in layer 
IV have receptive field properties similar to those in LGN.  However, in striking contrast with  receptive field characteris-
tics of earlier neurons, most cortical cells (other layers of V1) show:

• orientation selectivity

• spatial frequency selectivity, some with quite narrow tuning

• spatial phase selectivity (simple cells)

• binocularity

• motion selectivity

Apart from the spatial frequency selectivity, these properties were discovered in large part by the work over a couple of 
decades by Hubel, D. H., & Wiesel, T. N. (see 1968 reference). Hubel and Wiesel won the Nobel prize for this work. 
Below is a version of an earlier demonstration of local spatial filters tuned to spatial frequency and orientation. 
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‡ Receptive field structure

Figures from Kandel & Schwartz

There are two main types of cells. The simple cells are roughly linear except for  rectification, are spatially and 
temporally band-pass, and show spatial phase  sensitivity. A first approximation model for simple cell response firing rate 
(in impulses/sec) is:

sHw.gL, where g is the image vector, w the receptive field weighting function, and s(·) is a rectifying function (e.g 
If[#>0,#,0]&). 
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Both the psychophysical and neurophysiological data could be accounted for, in part,  by assuming the visual system  
performs a quasi-Fourier analysis of the image, the exact form determined by the receptive field weighting function w. 

We've seen how one possible model assumes that the visual system computes the coefficients (or spectrum) of an 
image with respect to the following basis set, called a Gabor set (Daugman, 1988). The set {wi} is modeled as: 

{e
-
Jx2+y2N

2s2 cos(2p( fx x + fy y + f))}, where iØ( fx, fy,f). 

We will return to a more detailed discussion of the receptive field models of simple cells later in the section of functions of 
the visual cortex. The half-wave rectification operation, s,  sets negative values to zero, and is linear for positive values. 
The spectrum coefficients are represented by the firing rates of cells whose receptive field weights are represented by the 
above basis functions. In actuality, because simple cells behave more like linear filters followed by half-wave rectification, 
there should be two cells for each coefficient-- "on" and "off" cells). One difference between this basis set, and the Fourier 
basis set (i.e. the optical eigenfunctions) is that this set has a local spatial restriction because of the Gaussian envelope. A 
second difference, which has major implications for computation, is that the basis functions are, in general, not orthogonal. 

You can view the demonstration either as a stimulus to test responses in cortical cells, or view it as a representation of the 
effective spatial weights of the underlying linear neural model that could account for the neuron's selectivities. If you open 
the phase slider, you can play a movie that also illustrates motion direction selectivity.

In[1]:= Grating[x_,y_,fx_,fy_,phase_] := Cos[(2.0 Pi (fx x + fy y) + phase)];
GratingPatch[x_,y_,fx_,fy_,sig_,phase_] := Exp[-((x)^2 + (y)^2)/(2*sig^2)]*Grating[x,y,fx,fy,phase];
kern[fx_, fy_, sig_,phase_] := 
  Table[GratingPatch[x, y, fx, fy, sig,phase], {x, -1, 1, .05}, {y, -1, 1, .05}];
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In[24]:= Manipulate@
GraphicsRow@8

ArrayPlot@kern@fr * Cos@thetaD, fr * Sin@thetaD, sig, phaseDD<D,
88fr, 1, "radial frequency"<, .1, 2<, 88theta, .4, "orientation"<, 0, Pi<,
88sig, .4, "envelope width"<, .001, 1<, 88phase, 0, "phase"<, .0, 2 * Pi<D

Out[24]=

radial frequency

1.53854

orientation

envelope width

phase

2.72158

The second major class of neurons is that of complex  cells. Like simple cells, complex cells are spatially and  
temporally  band-pass, show orientation and motion direction selectivity, but are insensitive to  the phase of a stimulus 
such as a sine-wave grating. Rather than half-wave rectification, they show full-wave rectification. A model for complex 
cells would resemble the sum of the outputs of several  subunits positioned at several nearby spatial locations. Each 
subunit would resemble  simple cell with a linear spatial filter followed by a threshold non-linearity. One way of obtaining 
the phase insensitivity would be to use subunits with cosine and sine phase receptive fields. The motion selectivity could 
be built in with appropriate inhibitory connections between subunits. Full-wave rectification could be built with subunit 
pairs that have excitatory and inhibitory receptive fields centers. 

Both simple and complex cells show contrast normalization--an important feature not included in the above simple model. 
For a discussion of models of simple and complex cells, see: Heeger, D. J. (1991). Nonlinear model of neural responses in 
cat visual cortex. In M. &. M. Landy A. (Ed.), Computational Models of Visual Processing (pp. 119-133). Cambridge, 
Massachusetts: M.I.T. Press.

A third class of cells are the end-stopped  (or "hyper-complex") cells  that have an optimal orientation for a bar or 
edge stimulus, but fire most actively if the bar or edge terminates within the receptive field, rather than extending beyond 
it. It has been suggested that these cells act as "curvature" detectors. (Dobbins, A., Zucker, S. W., & Cynader, M. S., 1987).

But things aren't as necessarily as neat as they at first seem. "Hyper-complex" is seen as less of class, and instead 
cells can show "end-stopping". Further,  see: Melcher and Ringach (2002) for a discussion of the simple/complex cell 
distinction.
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pairs that have excitatory and inhibitory receptive fields centers. 

Both simple and complex cells show contrast normalization--an important feature not included in the above simple model. 
For a discussion of models of simple and complex cells, see: Heeger, D. J. (1991). Nonlinear model of neural responses in 
cat visual cortex. In M. &. M. Landy A. (Ed.), Computational Models of Visual Processing (pp. 119-133). Cambridge, 
Massachusetts: M.I.T. Press.

A third class of cells are the end-stopped  (or "hyper-complex") cells  that have an optimal orientation for a bar or 
edge stimulus, but fire most actively if the bar or edge terminates within the receptive field, rather than extending beyond 
it. It has been suggested that these cells act as "curvature" detectors. (Dobbins, A., Zucker, S. W., & Cynader, M. S., 1987).

But things aren't as necessarily as neat as they at first seem. "Hyper-complex" is seen as less of class, and instead 
cells can show "end-stopping". Further,  see: Melcher and Ringach (2002) for a discussion of the simple/complex cell 
distinction.

‡ Columnar structure

In the cortex, we see for the first time binocular cells. The cells of the primary cortex  are organized into columns running 
roughly perpendicular to the surface in which  cells tend to have the same orientation preference and degree of binocular-
ity. A  "hypercolumn" is a group of columns spanning all orientations and both eyes

The receptive field organization of cortical cells is modifiable by experience. A number of models of self-organizing 
neural  networks have been developed to account for this (Von der Malsburg, 1973;  Bienenstock et al., 1982; Kohonen, 
1981; and Linsker, 1988). Below we consider how efficient coding of natural image predicts how receptive field structure 
(Olshausen and Field, 1996; 2004).

Embedded in the cortical hypercolumns  are cytochrome oxidase blobs in which are found opponent color cells that seem 
to lack strong orientation selectivity  (Livingstone, M. S., & Hubel, D. H., 1984;  Livingstone, M. S., & Hubel, D. H., 
1987).
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Embedded in the cortical hypercolumns  are cytochrome oxidase blobs in which are found opponent color cells that seem 
to lack strong orientation selectivity  (Livingstone, M. S., & Hubel, D. H., 1984;  Livingstone, M. S., & Hubel, D. H., 
1987).

Functions of Primary Cortex

‡ Local measurements

Basic idea:

V1 cortical cells measure local orientation-specific image contrast differences, that are correlated with spatial 
changes in surface/object depth, material (texture) and view-object and object-object changes (motion). Our challenge in 
the second half of the course will be to understand how local measurements can be used for global inference--e.g. as in 
object recognition.

‡ Spatial frequency filtering: Psychophysics and physiology

Earlier, we looked at the psychophysical evidence for spatial frequency filtering in the experiment of Campbell 
and Robson, and the evidence for scale-invariance of the filters in the ideal-observer experiment of Burgess et al., Watson 
et al., and Kersten. These studies represent a small fraction of the psychophysics that has explored the properties of spatial 
frequency channels in human vision. Both adaptation and masking studies have also been used to infer properties of 
human spatial filters. The results of masking, adaptation, and other psychophysical studies of spatial and orientation 
frequency selectivity in human vision are surprisingly consistent in suggesting the basic form for a cortical basis set for 
images. 

The basis set has to be discretized, and leaves several free parameters. Most models of detection and masking get 
by with about 6 spatial frequencies, about 12 orientations (specified by the ratio of horizontal and vertical spatial frequen-
cies), and two phases (cosine and sine) at each retinal location. A subset of neurons representing a particular spatial 
frequency bandwidth  makes up a spatial frequency channel. (Although there is neurophysiological evidence for pairs of 
V1 neurons having receptive fields with 90 deg phase shifted relative to each other, there is evidence against absolute 
phase--i.e. there is not a predominance of edge or bar type receptive fields. See Field and Tolhurst). One parameter still 
left unspecified is the standard deviation or spread of the Gaussian envelope. If large, this basis set approaches that of 
regular and  global Fourier analysis. The psychophysical data suggest that the standard deviation be such that the Gaussian 
envelope is about one cycle (at the 1/e point) of the sine wave. One cycle corresponds to about 1.5 octaves spatial fre-
quency bandwidth (an octave measure of width is: log to the base two of the ratio of the high to low frequencies.)
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‡ Stereo, or disparity measurements

As mentioned earlier, primary cortex brings together information  from the two eyes in single neurons. This 
information is important for coordinated eye movements and stereo  vision. Stereovision depends on the slight image 
differences, called disparities, that occur as a consequence of the two eyes having different views of the 3D world. Cells 
can be binocular without being sensitive to disparity. Although V1 cells are predominantly binocular, it was at first 
thought that disparity selectivity did not arise until V2 (Hubel and Wiesel, 1970). However, there is evidence for disparity 
selective cells in V1 and V2 (Poggio, G., F., & Poggio, T. ,1984). Disparity selectivity is a trivial task for single bar 
stimulus (in a uniform background), and it wasn't until relatively recently that neurons were found that effectively solve 
the problem of false matching (Poggio and Talbot, 1981). One possible algorithm for stereo vision is discussed here: 
Poggio, T. (1984). Vision by Man and Machine. Scientific American, 250, 106-115. Stereo vision has received a lot of 
attention in both computer and biological vision over the past several decades (Cumming, B. G., & DeAngelis, G. C. , 
2001).

‡ Motion measurements

The directional selectivity of cells in  striate cortex provide a form of early motion detection, akin to that described for 
invertebrate and rabbit peripheral vision. This detection  is only local and  thus ambiguous. Cortical cells suffer from the 
"aperture problem", and further computation is  required to disambiguate object motion. Cortical cells are also selective 
for speed (Orban et al., 1983).

Both the motion selectivity and  binocularity suggest a general hypothesis for  cortical function: it  links information likely  
to have a single environmental cause for  subsequent extra-striate processing. We will return to the computational theory 
of motion detection later.

Why  would the visual system have such a representation that combines orientation and spatial frequency selectiv-
ity? We have two types of explanations. One is that  encoding over multiple spatial scales is important for subsequent 
processing  that may involve edge detection, texture measurements, or stereoscopic matching, and so forth.  Analogous 
pyramid schemes have been developed for computer vision. (See Adelson, E. H., Simoncelli, E., & Hingorani, R., 1987). 
The second explanation is in terms of economical or efficient encoding which we return to below (Simoncelli and 
Olshausen, 1999).
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In summary, basic image processing functions from eye to cortex are:
Retina

Spatio-temporal filtering attenuates low frequencies, wavelength/color coding

Chiasm

Begins grouping information from nearby points in the world to nearby anatomical locations

Lateral geniculate nucleus (lgn)

More spatio-temporal filtering. Groups, but doesn't combine information from two eyes.

Primary visual cortex (V1, striate, 17)

Brings together local image measurements--information that belongs together

columnar structure

binocular vision and stereopsis

motion

edge & bar detectors

Spatial filtering by: Simple, complex, end-stopped cells

Why spatial filtering?

cortical basis set and efficient image representations

edge detection
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Efficient representation of information & neural networks
We'll first consider the single-channel spatial filtering model and retinal coding.

Lateral inhibition is pervasive in early visual coding across many species of animals, from invertebrates like the horseshoe 
crab to primates. We would like to know why, and thus come up with a computational theory for lateral inhibition. We 
already saw an argument for lateral inhibition as a front-end for edge detection. It is also a means to reduce the dynamic 
range--but is there a principled way of reducing the dynamic range while avoiding discarding information? Let’s look at 
possible explanation is in terms of efficient encoding.

The retina needs to encode a large number of levels of light intensities into a small number of effective neuronal 
levels. A quick calculation based on Poisson statistics shows that in about a 1/5 second, there are about 200 reliably 
distinguishable light levels given a potential (huge) range of  between 10^10 and 10^(-2) photons/sec/receptor at 555 nm.

A similar calculation  based on Poisson statistics for neural discharge indicates only about 14-16  levels can be 
encoded in 1/5 of  a second. (Ganglion cell discharge is in general modeled by a Gamma distribution on inter-spike 
intervals, and Poisson statistics are a convenient approximation that corresponds to a first order gamma distribution; 
Gerstein, 1966; Robson and Troy, 1987.) We can make a calculation based on a first order Poisson approximation:

(1)p Hk spikes in DtL =
e-lDt lDtk

k!

(λ=average rate, λ(t)=f(intensity or contrast) 

Because of the refractory period, the maximum rate is less than 1000 Hz.  In general, it is much lower for ganglion cells, 
and 250 would be a liberal upper bound. 

250 Hz => 50 spikes in 1/5 sec.

Working down in steps of 1 standard deviation produces about 14 levels. The big challenge is to go from 200 levels to 14

Log2200 -> Log214, with minimal loss of information.

This  would require squeezing 7.6 to 3.8 bits/cone. Of course, we don't have to handle this whole range for a given scene 
and using a single mechanism. We've seen how a duplex receptor system helps, and the role of a sigmoidal non-linearity.  
We've also noted, this is not simply a matter of introducing a non-linearity--this will not work because the variability is the 
ultimate limit to resolution and it would  still remain. 

What tricks that could be used to handle the range problem? 

It turns out that for an arbitrary image ensemble where there are no spatial (or temporal) dependencies, one cannot con-
struct a reversible coding scheme that could squeeze the number of bits down. But for an image ensemble with some 
statistical structure or redundancy, there is hope. What is meant by statistical structure or redundancy?

In a 128 x 128 x 4 bit graphics display, there are 2^(128*128*4) or about 10^19,728 possible pictures.  Imagine a 
machine that started iterating through them. The vast majority would appear unnatural and look like TV "snow" or visual 
noise.  Only a near infinitesmal small fraction would correspond to natural images...i.e. are likely to occur.  So what is this 
fraction? Some years ago, I estimated an upper bound on this fraction using theoretical results from Claude Shannon's 
famous guessing game for the predictability of written English text (Kersten, 1987). The result was that  number of 
possible meaningful images < 10^6905  . If you could sit for multiple eons of time and view all the 10^19,728 pictures on 
your 128 x 128 x 4 bit computer display, about one out of every 10^12,823 pictures and your brain would "click" and you 
would say "aha, that one looks natural."  Why is this?  One fundamental reason is that there are correlations between 
neighboring pixel intensities. Correlations are one simple and basic measure of redundancy in images.
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What tricks that could be used to handle the range problem? 

It turns out that for an arbitrary image ensemble where there are no spatial (or temporal) dependencies, one cannot con-
struct a reversible coding scheme that could squeeze the number of bits down. But for an image ensemble with some 
statistical structure or redundancy, there is hope. What is meant by statistical structure or redundancy?

In a 128 x 128 x 4 bit graphics display, there are 2^(128*128*4) or about 10^19,728 possible pictures.  Imagine a 
machine that started iterating through them. The vast majority would appear unnatural and look like TV "snow" or visual 
noise.  Only a near infinitesmal small fraction would correspond to natural images...i.e. are likely to occur.  So what is this 
fraction? Some years ago, I estimated an upper bound on this fraction using theoretical results from Claude Shannon's 
famous guessing game for the predictability of written English text (Kersten, 1987). The result was that  number of 
possible meaningful images < 10^6905  . If you could sit for multiple eons of time and view all the 10^19,728 pictures on 
your 128 x 128 x 4 bit computer display, about one out of every 10^12,823 pictures and your brain would "click" and you 
would say "aha, that one looks natural."  Why is this?  One fundamental reason is that there are correlations between 
neighboring pixel intensities. Correlations are one simple and basic measure of redundancy in images.

We need tools for measuring correlations, and redundancy in images.

2nd order statistics

Example of the idea: a non-isotropic "1-D random-walk" image ensemble
We can build our intuitions be considering a space of 1-D images that is constrained to have similar nearby pixels. 

‡ 1-D Brownian images

In[64]:= step := 2 HRandom@Integer, 1D - 1 ê 2L;
next@x_D := Mod@x, sizeD + 1;

In[66]:= size = 64;
brown = N@Table@128, 8i, 1, size <, 8i, 1, size <DD;

12.SpatialCodingEfficiency.nb 15



In[68]:= For@j = 1, j < size, j++,
For@i = 1, i < size, i++,

If@Random@D > 0.5, brown@@next@iD, jDD = brown@@i, jDD + step,
brown@@next@iD, jDD = brown@@i, jDD - stepD;

If@brown@@i, jDD > 255, 255D;
If@brown@@i, jDD < 1, 0D;

D;
D;

Visual each 1-D image side by side using ArrayPlot[]

In[69]:= ArrayPlot@brown, Mesh Ø False, ImageSize Ø MediumD

Out[69]=

Along a horizontal line, the intensities are quite random--the samples were drawn independently. The gray-levels from 
pixel to pixel are not correlated:
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ListPlot@brown@@32DD, PlotJoined Ø True, ImageSize Ø SmallD

Out[70]=
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In contrast, vertical lines show a degree of regularity:

In[71]:= ListPlot@Transpose@brownD@@32DD, PlotJoined Ø True, ImageSize Ø SmallD

Out[71]=
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In[72]:= histobrown = myhistogram@brownD;
ListPlot@histobrown, PlotStyle Ø PointSize@0.015D, PlotRange Ø 80, 0.1<D
entropy@histobrownD

Out[73]=
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0.10

Out[74]= 4.46764
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‡ Efficient encryption code for 1-D brownian images

In[75]:= codebrown = Table@0, 8size<, 8size<D;
For@j = 1, j < size, j++,

For@i = 1, i < size, i++,
codebrown@@i, jDD = brown@@next@iD, jDD - brown@@i, jDD + 128;

D;
D;

In[77]:= ArrayPlot@codebrown, Mesh Ø False, PlotRange Ø 8126, 130<D

Out[77]=

In[82]:= ListPlot@codebrown@@32DD, PlotJoined Ø True, ImageSize Ø SmallD

Out[82]=
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In[89]:= histocodebrown = myhistogram@Flatten@codebrownDD;
ListPlot@histocodebrown, PlotStyle Ø PointSize@0.015D,
PlotRange Ø 80, 1<D

entropy@histocodebrownD

Out[90]=

0 50 100 150 200 250
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1.0

Out[91]= 1.16831

Second order statistics in natural images

‡ Autocorrelation function

ListCorrelate[ker, list] computes ⁄rKr as+r. Autocorrelation corresponds to KrØ ar: ⁄r ar as+r.

Analyze the correlation between pixel gray levels for each line, and then average them:

‡ Read in an image, say face256

In[92]:= face256 = granite;

In[93]:= autoface2 = Table@0, 8width<D;
For@i = 1, i < width + 1, i++,

autoface2 += ListCorrelate@face256@@iDD, face256@@iDD, width ê 2DD;
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ListPlot@autoface2 ê Max@autoface2D, PlotJoined Ø True,
PlotRange -> 8.95, 1<, ImageSize Ø SmallD

Out[95]=
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‡ Covariance matrices, and the outer product

Recall that the covariance is: Cov@X, YD = E@@X - mXD @Y - mYDD. The correlation gives a dimensionless measure of 
covariation: r@X, YD =

Cov@X,YD

sX sY
. 

Let X={x1 ...} and Y = {y j ...} be vectors. The average of the products xi y j or Hxi - mxiL Iyj - myjM give measures 

of how well xi and y j predict each other. The latter collection of average products is called the covariance matrix: 

Cov@X, YD = EA@X - mXD @Y - mYDTE 

where XYT is the notation for outer product of X and Y. Mathematica for the outer product is: Outer[Times, X,Y]. The 
outer product takes two vectors and produces the matrix whose entries are all possible pair-wise products of the elements 
of the two vectors. Contrast the outer with the inner (or dot) product which returns a scalar given two input vectors. Given 
M vector samples indexed by s, {Xs, Ys}, we can estimate the covariance matrix as: 

1
M
⁄s=1
M @Xs - mXD @Ys - mYDT .

When X=Y, an covariance matrix is called an autocovariance matrix, and similarly for autocorrelation. A covariance 
matrix is a symmetric matrix, and thus has orthogonal eigenvectors with real eigenvalues--a property that will become 
useful later.

‡ Multivariate gaussian (See ProbabilityOverview.nb in Lecture 3)

If the distribution is assumed to be multivariate gaussian, then the vector mean and covariance matrix fully determines the 
distribution.

The multivariate gaussian is a generalization of the gaussian distribution to higher dimensions, in which the standard 
deviation is replaced by the covariance matrix. The multivariate gaussian plays a central role in statistics, and provides a 
crude approximation as a generative model for natural images. The probability of vector x of dimension p is given by:
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p(x) = 1

H2 pLp S
e-
1
2
Hx-mLT S-1Hx-mL, where |S| = Det[S].

where m is the vector mean, and S is the covariance matrix. Mathematica has an add-in package that extends the normal 
routines to the multivariate case:

A two-dimensional example.

In[96]:= Needs@"MultivariateStatistics`"D

In[97]:= S = 881, .6<, 8.6, 1<<;
m = 81, 1<;
ndist = MultinormalDistribution@m , S D;

In[100]:= ContourPlot@PDF@ndist, 8x, y<D, 8x, -1, 3<, 8y, -1, 3<, ImageSize Ø SmallD

Out[100]=

Going to higher dimensions, an exponential drop-off in correlation can be modeled as a covariance matrix with diagonal 
elements equal to 1, and an exponential drop-off away from the diagonal. So the first row would be:

In[101]:= row1@r_D := TableAri, 8i, 0, 15<E;

Later we show how the covariance matrix can be used to find a new basis set for images such that when we project images 
onto the basis elements, the projections are no longer correlated. One way to do this is through the classical statistical 
technique called Principal Components Analysis or PCA. 

But first, let's look at some early and recent research that has sought to explain receptive field structure in terms of redun-
dancy reduction.

Efficient coding by the retina and V1
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Efficient coding by the retina and V1

Predictive coding & retina
Srinivasan et al. (1982) were the first to make quantitative predictions of how the retina makes use of inherent 

spatial and temporal correlations between light intensities found in natural images to reduce the output range required to 
send information about images. They measured the autocorrelation function and showed that it could be fit with an 
exponential curve.

‡ Autocorrelation measurements & model
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‡ Linear neural network

They assumed a linear model:

‡ The result

Given the autocorrelation function, and the linear model, R j =⁄iwji Li = L j -⁄i¹≠ j
Ñ Hji Li, they were able to show that the 

receptive field weights that minimized E(R j
2) predicted a "center-surround" receptive field:

They also showed that one would expect the inhibitory side lobes to get smaller at low light levels. Compare with the CSF 
functions for various light levels at the beginning of the lecture.
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Efficient, sparse coding in V1

‡ Olshausen & Field: Primary cortex

We might expect something like Fourier analysis of the image to result in efficient coding because of  the close relation-
ship between Fourier rotations and Karhunen- Loeve transformations (or Principal Components Analysis, see below) (e.g. 
Appendix A, Andrews, 1983). Fourier coefficients for natural images tend to be uncorrelated. Some work has been 
completed toward a functional explanation for  the orientation and spatial frequency tuning properties of  cortical receptive 
fields based on the statistics of natural  images (Field, 1987; Snyder), but the story is far from complete. Barlow has 
argued that a decorrelated representation of sensory information is important for efficient learning (Barlow, 1990).

There has been progress studying the relationship between self-organizing models of visual cortex, and efficient 
coding of image information. For more on this, see:  Linsker, R. (1990) and  Barlow, H. B., & Foldiak, P. (1989). 
Linsker's computational studies show, for example, that orientation tuning, and band-pass properties of simple cells can 
emerge as a consequence of maximum information transfer (in terms of variance) given the constraint that the inputs are 
already band-pass, and the receptive field connectivity is  a priori limited.

We will see in the next lecture that cells in the visual cortex send their visual information to an incredibly complex, 
and yet structured collection of extra-striate areas. Any hypothesized function of striate cortex must eventually take into 
account what the information is to be used for. In the next lecture, we will give a quick overview of extra-striate visual 
cortex, and introduce the computational problem of estimating scene properties from image data.

In 1996, Olshausen and Field showed that one could derive a set of basis functions that have the same characteristics as 
the ensemble of visual simple cells in primary visual cortex by requiring two simple constraints:

1) One should be able to express the image I(x,y) as a weighted sum of the basis functions, {fi}

2) The total activity across the ensemble should, on average, be small. This latter constraint is called "sparse coding". That 
is, a typical input image should activate a relatively small fraction of neurons in the ensemble. S() for example could be 
the absolute value of the activity ai :

(2)‚
x,y

BI Hx, yL - ‚
i

ai fi Hx, yLF
2
+ ‚

i

S HaiL

24 12.SpatialCodingEfficiency.nb



‡ Adaptation

Human orientation and spatial frequency selectivity changes with adaptation. Adaptation has been interpreted as an 
optimal change to new conditions. (e.g. see,  Wainwright, M. J. (1999). Visual adaptation as optimal information transmis-
sion. Vision Research, 39, 3960--3974.)
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Principal components analysis

Introduction to PCA
Principal components analysis (PCA)  is a statistical technique that is applied to an ensemble of n-dimensional measure-
ments (vectors or in our case images). To do PCA, all one needs is the autocovariance matrix and a good PCA algorithm. 
Good because images are big enough (p=mxn), and the covariance is much bigger (p^2).

PCA finds a matrix that transforms the input vectors into output vectors, such that output elements are no longer corre-
lated with each other. There is more than one matrix that will do this however, and PCA find the matrix which is a rigid 
rotation of the original coordinate axes, so it preserves orthogonality. (The Fourier transform is also a rotation.) Further, 
the  new coordinates can be ordered in terms of variance. The new coordinates turn out to be eigenvectors of the covari-
ance matrix. The directions or eigenvectors with the biggest variances are called the principal components. So the domi-
nant principal component has the most variance, and so forth. For data that are highly redundant, PCA can be used to 
eliminate dimensions that account for little of the total variance. 

PCA is important in computational models of visual processing (See Wandell, pages 254-258). For example, PCA has 
been used to account for and model:

opponent color processing

visual cortical cell development

efficient representation of human faces

face recognition given variability over illumination

internal model of objects for visual control of grasping

There has been considerable growth in the area of theoretical neural networks and PCA. An introduction to some of the 
ideas is given in the optional section below.

Standard computer statistical packages provide the tools for doing PCA on large data sets.Below we try to provide intu-
ition and background into the computation of principal components.

Statistical model of a two-variable input ensemble
Consider a two variable system whose inputs are correlated. The random variable, rv, is a 2D vector. The scatter plot for 

this vector has a slope of Tan[theta] = 0.41. The variances along the axes are 4 and .252 (.0625).  gprincipalaxes is a 

graph of the principal axes which we will use for later comparison with simulations. ContinuousDistribution-
s.m is a Mathematica package that provides routines for sampling from a Gaussian (or Normal) distribution, rather than 
the standard uniform distribution that Random[] provides.
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In[4]:= ndist = NormalDistribution[0,1];theta = Pi/8;
bigvar = 4.0; smallvar = 0.25
alpha = N[Cos[theta]]; beta = N[Sin[theta]];
rv := 
{bigvar x1 alpha + smallvar y1 beta,
bigvar x1 beta - smallvar y1 alpha} /.{x1-> Random[ndist],y1-> Random[ndist]};

gprincipalaxes = Plot[{x beta, x (-1/beta)}, {x,-4,4},
PlotRange->{{-4,4},{-4,4}},
PlotStyle->{RGBColor[1,0,0]},
AspectRatio->1];

Out[5]= 0.25

x1 and y1 are correlated. Let's view a scatterplot of samples from these two correlated Gaussian random variables.

In[9]:= npoints = 200;
rvsamples = Table[rv,{n,1,npoints}];

In[127]:= g1 = ListPlot[rvsamples,PlotRange->{{-4,4},{-4,4}},
AspectRatio->1];

In[128]:= Show@g1, gprincipalaxes, ImageSize Ø SmallD

Out[128]=
-4 -2 2 4
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-2

2

4
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Standard Principal Components Analysis (PCA)
Let E[•] stand for the expected or average of a random variable, •. The covariance matrix of a of vector random variable, x,  

is: E[  [x-E[x]][x-E[x]]T  ]. Let's compute the autocovariance matrix for rv.  The calculations are simpler because the 

average value of rv is zero. As we would expect, the matrix is symmetric:

In[129]:= autolist = Table[
Outer[Times,rvsamples[[i]],rvsamples[[i]]],

{i,Length[rvsamples]}];
MatrixForm[auto=

Sum[autolist[[i]],
{i,Length[autolist]}]/Length[autolist]]

Clear[autolist];

Out[130]//MatrixForm=

K
11.2219 4.71149
4.71149 2.05838

O

The variances of the two inputs (the diagonal elements) are due to the projections onto the horizontal and vertical axis of 
the generating random variable.

Now we will calculate the eigenvectors or the autocovariance matrix

In[132]:= MatrixForm[eigauto = Eigenvectors[auto]]

Out[132]//MatrixForm=

K
0.921186 0.389123
-0.389123 0.921186

O

Remember that the rows of a symmetric matrix are orthogonal. You can check that.

Let's graph the principal axes corresponding to the eigenvectors of the autocovariance matrix together with the scatterplot 
we plotted earlier.

In[133]:= gPCA =
Plot[{eigauto[[1,2]]/eigauto[[1,1]] x,
eigauto[[2,2]]/eigauto[[2,1]] x},

{x,-4,4}, AspectRatio->1,
PlotStyle->{{RGBColor[0,1,0],Dashed},{RGBColor[0,1,0],Dashed}}];
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Show@g1, gPCA, gprincipalaxes, ImageSize Ø SmallD

Out[134]=
-4 -2 2 4
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The eigenvalues give the ratio of the variances of the projections of the random variables rv[[1]], and rv[[2]] along the 
principal axes:

In[135]:= eigvalues = Eigenvalues[auto]

Out[135]= 813.2121, 0.0681677<

The projections along the principal axes are now decorrelated. We can see this by calculating the autocovariance matrix 
of the projected values:

In[136]:= autolist =
Table[
Outer[Times,eigauto.rvsamples[[i]],

eigauto.rvsamples[[i]]],
{i,Length[rvsamples]}];

MatrixForm[Chop[
Sum[autolist[[i]],
{i,Length[autolist]}]/Length[autolist]]]

Clear[autolist];

Out[137]//MatrixForm=

K
13.2121 0

0 0.0681677
O

Note that the off-diagonal elements (the terms that measure the covariation of the transformed random variables) are zero. 
Further, because the variance of one of the projections is near zero, one can in fact dispense with this component and 
achieve a good approximate coding of the data with just one coordinate.
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Note that the off-diagonal elements (the terms that measure the covariation of the transformed random variables) are zero. 
Further, because the variance of one of the projections is near zero, one can in fact dispense with this component and 
achieve a good approximate coding of the data with just one coordinate.

PCA and natural images

‡ Break a large image into a series of subimages. 

The idea is that each  subimage will be used as a statistical sample. We compute the outer product of each, and then 
average all 16 to get an estimate of the autocovariance matrix.

In[40]:= alpine = ImageDataB F;

awidth = Dimensions@alpineD@@1DD;
nregions = 16;
swidth = awidth ê nregions

Out[42]= 16

In[43]:= subface = Table@Take@alpine, 8i * swidth + 1, i * swidth + swidth<,
8j * swidth + 1, j * swidth + swidth<D, 8i, 0, nregions - 1<,

8j, 0, nregions - 1<D;

In[44]:= subfacelist = Table@0.0, 8256<D;
Table@subfacelist@@i + 16 * Hj - 1LDD = N@Flatten@subface@@i, jDDDD,
8i, 1, 16<, 8j, 1, 16<D;

Subtract off the mean.

In[47]:= subfacelist2 = Table@subfacelist@@iDD - Mean@subfacelist@@iDDD,
8i, 1, 256<D;

‡ Calculate the autocovariance matrix

In[48]:= 8Dimensions@subfacelist2D,
Dimensions@Outer@Times, subfacelist2@@1DD, subfacelist2@@1DDDD<

Out[48]= 88256, 256<, 8256, 256<<
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In[49]:= temp = Table@0.0, 8256<, 8256<D;
For@i = 1, i < Dimensions@subfacelistD@@1DD, i++,

temp = N@Outer@Times, subfacelist2@@iDD, subfacelist2@@iDDDD + temp;
D;

In[51]:= ArrayPlot@temp, Mesh Ø FalseD

Out[51]=

‡ Calculate the eigenvectors and eigenvalues of the autocovariance matrix

‡ Calculate the eigenvectors and eigenvalues of the autocovariance matrix

In[168]:= eigentemp = Eigenvectors@tempD;
eigenvaluestemp = Eigenvalues@tempD;

In[170]:= ListPlot@Chop@eigenvaluestempDD

Out[170]=
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‡ Display the first 32 eigenvectors as "eigenpictures"

In[171]:= Table@ArrayPlot@Partition@eigentemp@@iDD, 16D, Mesh Ø False,
ImageSize Ø Tiny, PixelConstrained Ø 83, 3<D, 8i, 1, 32<D

Out[171]= : , , , , , , ,

, , , , , , ,

, , , , , ,

, , , , , ,

, , , , , >

Using synthesis: How good is a 2nd order model of natural images? 
Let's construct a 2nd order generic generative statistical model of images and see what the samples look like.

Random Fractals
Random fractals are a crude but good statistical models for the amplitude spectra certain classes of natural images. Ran-
dom fractals can be characterized by the fractal dimension D (3<D<4) and amplitude spectrum, 1/( fx2 + fy2)^(4-D). The 
amplitude spectrum is a straight line when plotted against frequency in log-log coordinates. The condition If[ ] is used to 
include a fudge term (1/(2)^(q)) to prevent blow up near zero in the Block[ ] routine later.
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In[108]:= size = 64;
hsize = size ê 2;
fwidth = 2 * hsize; hfwidth = fwidth ê 2;

In[111]:= q = 2.5;
LogLogPlot@If@Hi ¹≠ 0 »» j ¹≠ 0L, 1 ê Hi * i + 0 * 0L^HqL, 1 ê H2L^HqLD,
8i, 0.0001, hfwidth - 1<, ImageSize Ø SmallD

Out[112]=
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‡ Here is a function to make a low-pass filter with fractal dimension D. (D, here should be between 3 

and 4). Note that we first make the filter centered in the middle, and then adjust it so that it is 

symmetric with respect to the four corners.

In[113]:=
fractalfilter[D_] :=
Block[ {q,i,j,mat},

q = 4 - D;
mat = Table[If[(i != 0 || j!= 0),

1/(i*i + j*j)^(q), 1/(2)^(q)],
{i,-hfwidth,hfwidth-1},{j,-hfwidth,hfwidth-1}];
mat = RotateRight[mat,{hfwidth,hfwidth}];
Return[mat];
];
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In[114]:= ArrayPlot@RotateLeft@fractalfilter@3.5D, 8hfwidth, hfwidth<D,
Mesh Ø FalseD

Out[114]=

Here is the amplitude spectrum plot for a random fractal image:

In[115]:= randomspectrum = Abs@temp = Fourier@Table@Random@D, 8size<, 8size<DDD;
randomphase = Arg@tempD;

In[117]:= ffilt = fractalfilter@3.5D randomspectrum;
ArrayPlot@RotateRight@ffilt, 8hfwidth, hfwidth<D, Mesh -> False,
Frame -> FalseD

Out[118]=
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‡ Here is a random fractal image, with D = 3.2

In[119]:= ArrayPlot@Chop@
InverseFourier@
fractalfilter@3.2D randomspectrum Exp@I randomphaseDDDD

Out[119]=

The above gaussian fractal is low-pass, and natural images have tend to have edges, and somewhat sharp patches over a 
range of scales. Can one do better? Yes. See the sample below from the paper by: Zhu, S. C., & Mumford, D. (1997). Prior 
Learning and Gibbs Reaction-Diffusion. IEEE Trans. on PAMI, 19(11), 1236-1250.

Higher order redundancies & contrast normalization

‡ Contrast normalization

There are many higher order redundancies in natural images, and a major challenge is to characterize them, and under-
stand how the visual system exploits these redundancies. For example, the figure below shows that the output of one 
spatial filter (receptive field (RF) responses) can predict the variability in a second spatial filter. Eero Simoncelli has 
shown how a non-linearity called "contrast normalization" serves to remove this redundancy.
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See Figure 8 in  Simoncelli, E. P., & Olshausen, B. A. (2001). Natural image statistics and neural representation. Annu 
Rev Neurosci, 24, 1193-1216.(pdf). 

See also Figure 5 in Geisler, W. S. (2008). Visual perception and the statistical properties of natural scenes. Annu Rev 
Psychol, 59, 167-192. (pdf). 

Next time

‡ Edge detection

Appendices

Some exercises on 1rst and 2nd order spatial filter statistics
For a discussion of 1rst and 2nd order spatial filter statistics, see: Simoncelli and Olshausen, 1999.
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Initialization stuff
Kurtosis

Some useful functions: scale256, histogram, argmax

In[52]:= scale256@image_D := Module@8a , b<,
a = 255 ê HMax@imageD - Min@imageDL;
b = -a Min@imageD;
Return@a image + bD;D;

In[53]:= myhistogram@image_D := Module@8histx<,
histx = BinCounts@Flatten@imageD, 80, 255, 1<D;
Return@N@histx ê Plus üü histxDD;

D;

In[54]:= argmax@x_D := Position@x, Max@xDD@@1, 1DD;

Use image: " alpine.jpg" is a 256x256  array of gray-levels
‡ Problem 1: Histogram of alpine256

Expand  alpine so that the minimum and maximum gray-levels are 0 and 255 respectively. Call it  alpine256. Plot the 
histogram of  alpine256.

‡ Answer 1:

In[55]:= alpine256 = scale256@ alpineD;

In[56]:= Dimensions@myhistogram@alpine256DD

Out[56]= 8255<
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In[57]:=
ListPlot@myhistogram@alpine256DD

Out[57]=
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‡ Problem 2: Histogram of the convolution of sgabor[x,y] with alpine256[x,y] = sgaborƒalpine256

Define an 8x8 pixel sine-phase gabor filter: 

sgabor[x_,y_,fx_,fy_,sig_]:=

   N[Exp[(-x^2-y^2)/(2 sig*sig)] Sin[2 Pi (fx x+fy y)]]; , 

where fx = fy = 1/8. And sig = 4.

02.557.51012.515
0

2.5
5

7.5
10

12.5
15

Convolve  alpine256 with this filter. As with alpine, scale the resulting image so that [min,max] = [0,255]. Plot the his-
togram of the resulting "neural image".

‡  Answer 2:

Gabor filter

In[58]:= sgabor@x_, y_, fx_, fy_, sig_D :=
N@Exp@H-x^2 - y^2L ê H2 sig * sigLD Sin@2 Pi Hfx x + fy yLDD;

In[59]:= fsize = 16;
filter = Table@sgabor@Hi - fsize ê 2L, Hj - fsize ê 2L, 1 ê 8, 1 ê 8, 4D,

8i, 0, fsize<, 8j, 0, fsize<D;
filter = Chop@filterD;
ArrayPlot@filter, Mesh Ø False, PlotRange Ø 8-1, 1<D;

Convolution
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In[62]:= falpine = ListConvolve@filter, alpine256D;
falpine256 = scale256@falpineD;

Histogram

In[71]:= hist1 = myhistogram@falpine256D;
a = Max@hist1D;
u = argmax@hist1D;
s = 4;
g1 = ListPlot@hist1, PlotRange Ø 880, 255<, 80, a<<D;

In[80]:= g2 = Plot@a Exp@-Hx - uL^2 ê H2 s^2LD, 8x, 0, 255<,
PlotRange Ø 880, 255<, 80, a<<D;

Show@g1, g2D

Out[81]=
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‡ Problem 3: Excess kurtosis: alpine256 vs. sgaborƒalpine256

Skewness and kurtosis are statistics describing the shape of a distribution. Skewness is a measure of asymmetry. Kurtosis 
compares the concentration of data around the peak to the tails versus the concentration in the flanks. 

Kurtosis is calculated by dividing the fourth central moment by the square of the variance of the data. KurtosisExÖ
cess is shifted so that it is zero for the normal distribution, positive for distributions with a prominent peak and heavy 
tails, and negative for distributions with prominent flanks. 

Calculate  kurtosis for alpine256 and falpine256.
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‡ Answer 3:

In[82]:= Kurtosis@Flatten@N@alpine256DDD
Kurtosis@Flatten@N@falpine256DDD

Out[82]= 3.0326

Out[83]= 10.116

2nd order statistics spatial filter

‡ Problem 5: Joint histogram of two overlapping orthogonal filters

‡ Answer 5:

In[84]:= fsize = 16;
filter2 = Table@sgabor@Hi - fsize ê 2L, Hj - fsize ê 2L, 1 ê 8, -1 ê 8, 4D,

8i, 0, fsize<, 8j, 0, fsize<D;
filter2 = Chop@filter2D;
ArrayPlot@filter2, Mesh Ø False, PlotRange Ø 8-1, 1<D

Out[86]=
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‡ Convolution

In[87]:= falpineB = ListConvolve@filter2, alpine256D;
falpine256B = scale256@falpineBD;

In[89]:= ArrayPlot@falpine256B, Mesh Ø FalseD

Out[89]=

‡ 1D Histogram

In[101]:= hist2 = myhistogram@falpine256BD;

a = Max@hist2D;
u = argmax@hist2D;
s = 4;
g3 = ListPlot@hist2, PlotRange Ø 880, 255<, 80, a<<D;

Non-gaussian

In[106]:= g2 = Plot@a Exp@-Hx - uL^2 ê H2 s^2LD, 8x, 0, 255<,
PlotRange Ø 880, 255<, 80, a<<, DisplayFunction Ø IdentityD;

Show@g3, g2D

Out[107]=
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‡ 2D histogram
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‡

2D histogram

In[108]:= temp = Transpose@8Flatten@falpine256D, Flatten@falpine256BD<D;
twoDhist = BinCounts@temp, 80, 255, 1<, 80, 255, 1<D;
twoDhist2 = Map@If@Ò ã 0, 0, Log@ÒDD &, twoDhist, 82<D;

In[111]:= ArrayPlot@twoDhist2, Mesh Ø FalseD

Out[111]=

Neural networks and principal components

‡ Neural network model using Hebb together with Oja's rule for extracting the dominant principal 

component

Oja, E. (1982). A simplified neuron model as a principal component analyzer. Journal of Mathematical 
Biology, 15, 267-273.
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